В ВятГУ создали алгоритм поиска речевых сообщений, а сейчас обучают нейронную сеть проверке текстов

Этим занимается молодой ученый Александра Татаринова.

Content-Based Retrieval является динамично развивающейся областью информатики. Среди актуальных проблем - поиск речевых документов по текстовому запросу пользователей. Как найти нужный материал в коллекции аудиофайлов, не прибегая к прослушиванию каждого из них? Реально ли сделать это путем введения обычного текстового запроса?

Оказывается, да. О том, как этого достигнуть, рассказала доцент кафедры прикладной математики и информатики ВятГУ Александра Татаринова:

Мы исходили из гипотезы, согласно которой поиск должен производиться не конкретно по распознанному тексту, а путем его преобразования в фонемное представление.

Молодому ученому вместе с научным руководителем Дмитрием Прозоровым, профессором кафедры радиоэлектронных средств ВятГУ, удалось добиться поставленной цели: были предложены метод поиска и алгоритм фонемного транскрибирования на основе многосвязных цепей Маркова. Теперь пользователь, имеющий некую коллекцию аудиофайлов, может сделать запрос путем ввода текста, а система переведет его в фонемное представление, обеспечивая максимальную точность поиска.

Проведенное исследование легло в основу диссертационной работы Александры Татариновой, а последние результаты нашли отражение в статье «Comparison Of Grapheme-to-Phoneme Conversions For Spoken Document Retrieval», вошедшей в сборник материалов конференции IEEE EWDTS 2019.

Разработанные ученым ВятГУ метод и алгоритм могут использоваться для создания систем, нацеленных на получение актуальных для коммерческих компаний и государственных учреждений сведений: от жалоб потребителей товаров и услуг до получения данных о разглашении конфиденциальной информации.

Сегодня Александра Татаринова также активно занимается исследованиями в области Grammatical Error Correction. Это, в первую очередь, устранение нарушений грамматической связи между словами в предложениях, для решения которой могут быть использованы глубокие нейронные сети.

По сути мы должны обучить нейронную сеть находить и исправлять в предложениях несогласованность, возникшую в результате опечаток или слабого владения пользователем русским языком. Это мы делаем на основе нейронной сети с архитектурой Transformer, содержащей механизм self-attention, что позволяет лучше обучить связям между словами внутри предложения, -

пояснила А.Г. Татаринова.

Исследования, проводимые молодым ученым, полностью соответствуют мировым трендам. Важно, что эти темы находят отражение на занятиях со студентами, приобщая их к новейшим научным достижениям.  Это, в частности, можно сказать о курсах «Математические модели распознавания образов» и «Компьютерное зрение», которые Александра Геннадьевна читает для обучающихся в магистратуре Института математики и информационных систем ВятГУ.

На рисунке: схема системы поиска речевых документов по текстовому запросу

ВятГУ, Вятский государственный университет

  • Приемная комиссия ВятГУ
    город Киров, Московская улица, 36 аудитории 110а, 129.

    Похожие материалы по теме

    Т Плюс поддерживает клиентов

    ПАО «Т Плюс» продолжает свою работу в усиленном режиме – мы как и прежде снабжаем теплом, светом и горячей водой миллионы наших клиентов на Урале и в Поволжье